Summary
AI & Machine Learning
Energy
Financial Services
Life Sciences
Media & Entertainment
Product Design
Productivity & Development
Subsystem Scores
Workload Scores
Configuration
SPECworkstation® 4.0.0 Summary
Official Submission Candidate
23 of 23 workloads produced scores
System Configuration
Manufacturer | LENOVO |
Model | Lenovo ThinkPad P16 Gen 2 |
CPU | 13th Gen Intel(R) Core(TM) i9-13950HX |
Memory | 64.00 GB @ 4000 MHz |
GPU | NVIDIA RTX 5000 Ada Generation Laptop GPU |
Display | Internal Display 15.9" (3840x2400) |
Storage | Intel Raid 0 Volume 7630.89 GB - SCSI |
OS | Microsoft Windows 11 Pro (26100) |
Submission Details
Result Date | Tue Nov 19 2024 17:19:32 GMT-0500 (Eastern Standard Time) |
Submitter Company | |
Submitter Name | |
Submitter Comments |
Industry Vertical Scores
AI & Machine Learning |
1.87 |
Energy |
1.90 |
Financial Services |
0.94 |
Life Sciences |
2.18 |
Media & Entertainment |
2.33 |
Product Design |
2.05 |
Productivity & Development |
1.47 |
Hardware Subsystem Scores
CPU | 1.38 |
Accelerator | 4.72 |
Graphics | 9.36 |
Storage | 1.64 |
Workload | SPEC Ratio |
---|---|
7-Zip | 3.21 |
Autodesk Inventor | 1.00 |
Blender | 1.73 |
Convolution | 1.29 |
Data Science | 1.41 |
HandBrake | 1.56 |
Hidden Line Removal | 1.21 |
LAMMPS | 1.45 |
LLVM Clang | 1.43 |
LuxCoreRender | 1.42 |
MFEM | 1.22 |
NAMD | 1.21 |
Octave | 1.10 |
ONNX Inference | 2.49 |
OpenFOAM | 5.48 |
Options Pricing | 0.94 |
Poisson | 1.01 |
Python 3 | 1.19 |
Rodinia CFD | 1.84 |
Rodinia Life Sciences | 1.25 |
SRMP | 1.00 |
Viewport Graphics | 9.36 |
WPCstorage | 1.64 |
Industry Vertical Scores
AI & Machine Learning | 1.87 | |||
Workload | Reference Result | Measured Result | Unit | SPEC Ratio |
---|---|---|---|---|
Data Science |
|
|||
Pandas | 131.99 |
108.23
|
sec |
1.22
|
Scikit-learn | 449.17 |
336.49
|
sec |
1.33
|
XGBoost | 91.50 |
53.50
|
sec |
1.71
|
ONNX Inference |
|
|||
CPU ResNet50-FP32-batch8 Latency | 63.72 |
51.16
|
ms |
1.25
|
CPU ResNet50-FP32-batch8 Throughput | 18.33 |
21.23
|
inferences/sec |
1.16
|
CPU ResNet50-INT8-batch8 Latency | 22.37 |
27.55
|
ms |
0.81
|
CPU ResNet50-INT8-batch8 Throughput | 46.62 |
47.91
|
inferences/sec |
1.03
|
CPU SuperResolution-FP32-batch8 Latency | 58.42 |
58.53
|
ms |
1.00
|
CPU SuperResolution-FP32-batch8 Throughput | 20.87 |
23.02
|
inferences/sec |
1.10
|
CPU SuperResolution-INT8-batch8 Latency | 21.34 |
24.95
|
ms |
0.85
|
CPU SuperResolution-INT8-batch8 Throughput | 55.92 |
57.61
|
inferences/sec |
1.03
|
GPU ResNet50-FP32-batch32 Throughput | 3.92 |
42.35
|
inferences/sec |
10.80
|
GPU ResNet50-INT8-batch32 Throughput | 1.92 |
73.93
|
inferences/sec |
38.50
|
GPU SuperResolution-FP32-batch32 Throughput | 6.59 |
37.09
|
inferences/sec |
5.63
|
GPU SuperResolution-INT8-batch32 Throughput | 1.92 |
39.23
|
inferences/sec |
20.40
|
Industry Vertical Scores
Energy | 1.90 | |||
Workload | Reference Result | Measured Result | Unit | SPEC Ratio |
---|---|---|---|---|
Convolution |
|
|||
20K/100 | 0.09 |
0.12
|
iterations/sec |
1.29
|
Poisson |
|
|||
Jacobi Rectangular Grid | 16.05 |
16.82
|
iterations/sec |
1.05
|
Jacobi Square Grid | 6.19 |
6.07
|
iterations/sec |
0.98
|
SRMP |
|
|||
2D | 19.45 |
19.37
|
sec |
1.00
|
Viewport Graphics |
|
|||
energy | 11.48 |
150.75
|
fps |
13.10
|
WPCstorage |
|
|||
energy | 1547.93 |
2230.03
|
points |
1.44
|
Industry Vertical Scores
Financial Services | 0.94 | |||
Workload | Reference Result | Measured Result | Unit | SPEC Ratio |
---|---|---|---|---|
Options Pricing |
|
|||
Monte Carlo | 35137.48 |
33852.73
|
options/sec |
0.96
|
Black-Scholes | 3389.63 |
3483.70
|
Moptions/sec |
1.03
|
Binomial | 79377.62 |
66147.18
|
options/sec |
0.83
|
Industry Vertical Scores
Life Sciences | 2.18 | |||
Workload | Reference Result | Measured Result | Unit | SPEC Ratio |
---|---|---|---|---|
LAMMPS |
|
|||
LJ | 705.82 |
1099.61
|
tau/day |
1.56
|
CHAIN | 1190.35 |
1855.03
|
tau/day |
1.56
|
EAM | 0.63 |
0.98
|
ns/day |
1.55
|
CHUTE | 38.25 |
41.60
|
tau/day |
1.09
|
RHODO | 0.26 |
0.41
|
ns/day |
1.57
|
NAMD |
|
|||
apoa1 | 45.38 |
39.91
|
ms/step |
1.14
|
f1atpase | 130.50 |
112.07
|
ms/step |
1.16
|
stmv | 448.57 |
337.20
|
ms/step |
1.33
|
Rodinia Life Sciences |
|
|||
Heart Wall | 0.69 |
0.89
|
fps |
1.28
|
HotSpot | 8.55 |
6.08
|
sec |
1.41
|
LavaMD | 0.07 |
0.09
|
iterations/sec |
1.26
|
SRAD | 47.04 |
49.72
|
iterations/sec |
1.06
|
Viewport Graphics |
|
|||
medical | 9.63 |
147.38
|
fps |
15.30
|
WPCstorage |
|
|||
namd | 1250.61 |
1863.65
|
points |
1.49
|
Industry Vertical Scores
Media & Entertainment | 2.33 | |||
Workload | Reference Result | Measured Result | Unit | SPEC Ratio |
---|---|---|---|---|
Blender |
|
|||
Classroom | 281.72 |
65.29
|
sec |
4.31
|
BMW27 | 43.82 |
30.74
|
sec |
1.43
|
BMW1M | 17.74 |
12.35
|
sec |
1.44
|
Island | 29.68 |
29.38
|
sec |
1.01
|
HandBrake |
|
|||
SVT-AV1 8K to 4K | 195.16 |
138.08
|
sec |
1.41
|
x265 4K to 1080p | 38.36 |
37.03
|
sec |
1.04
|
x265 4K to 4K | 107.73 |
94.45
|
sec |
1.14
|
x264 1080p to 1080p | 49.98 |
13.07
|
sec |
3.82
|
GPU H.265 4K to 4K | 169.65 |
129.28
|
fps |
0.76
|
GPU H.265 4K to 1080p | 128.84 |
384.92
|
fps |
2.99
|
LuxCoreRender |
|
|||
DLSC | 2.46 |
4.18
|
Msamples/sec |
1.70
|
Food | 1.84 |
3.00
|
Msamples/sec |
1.63
|
Danish Mood | 2.29 |
2.63
|
Msamples/sec |
1.15
|
Procedural Leaves | 1.10 |
1.41
|
Msamples/sec |
1.28
|
Viewport Graphics |
|
|||
3dsmax | 15.96 |
199.83
|
fps |
12.50
|
maya | 62.09 |
498.17
|
fps |
8.02
|
WPCstorage |
|
|||
3dsmax | 3299.42 |
5395.76
|
points |
1.64
|
handbrake | 1897.99 |
3122.44
|
points |
1.65
|
maya | 2037.06 |
5237.10
|
points |
2.57
|
MayaVenice | 472.63 |
1003.27
|
points |
2.12
|
MandE | 1625.72 |
1895.96
|
points |
1.17
|
Industry Vertical Scores
Product Design | 2.05 | |||
Workload | Reference Result | Measured Result | Unit | SPEC Ratio |
---|---|---|---|---|
Autodesk Inventor |
|
|||
Open Document | 4253.73 |
4147.00
|
ms |
1.03
|
Create/Update Files | 4973.68 |
4675.00
|
ms |
1.06
|
Rebuild | 10590.28 |
9681.00
|
ms |
1.09
|
Render Style/Material | 628.78 |
755.00
|
ms |
0.83
|
Hidden Line Removal |
|
|||
Palatov | 24.29 |
29.27
|
fps |
1.21
|
MFEM |
|
|||
Dynamic AMR | 227.39 |
186.32
|
sec |
1.22
|
OpenFOAM |
|
|||
XiFoam Solver | 803.27 |
146.60
|
sec |
5.48
|
Rodinia CFD |
|
|||
Pre-Euler | 138.14 |
254.77
|
iterations/sec |
1.84
|
Viewport Graphics |
|
|||
catia | 17.57 |
112.24
|
fps |
6.39
|
creo | 48.42 |
230.92
|
fps |
4.77
|
solidworks | 42.90 |
444.01
|
fps |
10.30
|
WPCstorage |
|
|||
ccx | 1398.45 |
2319.68
|
points |
1.66
|
cfd | 1921.51 |
3018.54
|
points |
1.57
|
icePack | 1543.34 |
2045.34
|
points |
1.33
|
mcad | 2612.50 |
5340.75
|
points |
2.04
|
proddev | 659.82 |
773.55
|
points |
1.17
|
Industry Vertical Scores
Productivity & Development | 1.47 | |||
Workload | Reference Result | Measured Result | Unit | SPEC Ratio |
---|---|---|---|---|
7-Zip |
|
|||
Decompression | 16.04 |
17.08
|
sec |
0.94
|
Compression | 254.57 |
46.89
|
sec |
5.43
|
LLVM Clang |
|
|||
PyTorch | 562.76 |
393.88
|
sec |
1.43
|
Octave |
|
|||
obench | 1.20 |
1.08
|
sec/operation |
1.11
|
benchmark2 | 0.11 |
0.10
|
sec/operation |
1.10
|
Python 3 |
|
|||
NumPy Create Matrix | 0.36 |
0.54
|
sec |
0.67
|
NumPy Add Matrix | 4.44 |
4.29
|
sec |
1.04
|
NumPy Multiply Matrix | 8.06 |
7.18
|
sec |
1.12
|
NumPy Invert Matrix | 15.53 |
12.32
|
sec |
1.26
|
NumPy Sin Matrix | 2.67 |
2.51
|
sec |
1.06
|
Multi-Matrix | 65.50 |
46.69
|
sec |
1.40
|
WPCstorage |
|
|||
7zip | 431.06 |
936.56
|
points |
2.17
|
mozillaVS | 7708.43 |
11602.00
|
points |
1.51
|
Hardware Subsystem Scores
Hardware Subsystem
SPEC Ratio
4.72
Workload | Reference Result | Measured Result | Unit | SPEC Ratio |
---|---|---|---|---|
HandBrake |
|
|||
GPU H.265 4K to 4K | 169.65 |
129.28
|
fps |
0.76
|
GPU H.265 4K to 1080p | 128.84 |
384.92
|
fps |
2.99
|
ONNX Inference |
|
|||
GPU ResNet50-FP32-batch32 Throughput | 3.92 |
42.35
|
inferences/sec |
10.80
|
GPU ResNet50-INT8-batch32 Throughput | 1.92 |
73.93
|
inferences/sec |
38.50
|
GPU SuperResolution-FP32-batch32 Throughput | 6.59 |
37.09
|
inferences/sec |
5.63
|
GPU SuperResolution-INT8-batch32 Throughput | 1.92 |
39.23
|
inferences/sec |
20.40
|
1.38
Workload | Reference Result | Measured Result | Unit | SPEC Ratio |
---|---|---|---|---|
7-Zip |
|
|||
Decompression | 16.04 |
17.08
|
sec |
0.94
|
Compression | 254.57 |
46.89
|
sec |
5.43
|
Autodesk Inventor |
|
|||
Open Document | 4253.73 |
4147.00
|
ms |
1.03
|
Create/Update Files | 4973.68 |
4675.00
|
ms |
1.06
|
Rebuild | 10590.28 |
9681.00
|
ms |
1.09
|
Render Style/Material | 628.78 |
755.00
|
ms |
0.83
|
Blender |
|
|||
Classroom | 281.72 |
65.29
|
sec |
4.31
|
BMW27 | 43.82 |
30.74
|
sec |
1.43
|
BMW1M | 17.74 |
12.35
|
sec |
1.44
|
Island | 29.68 |
29.38
|
sec |
1.01
|
Convolution |
|
|||
20K/100 | 0.09 |
0.12
|
iterations/sec |
1.29
|
Data Science |
|
|||
Pandas | 131.99 |
108.23
|
sec |
1.22
|
Scikit-learn | 449.17 |
336.49
|
sec |
1.33
|
XGBoost | 91.50 |
53.50
|
sec |
1.71
|
HandBrake |
|
|||
SVT-AV1 8K to 4K | 195.16 |
138.08
|
sec |
1.41
|
x265 4K to 1080p | 38.36 |
37.03
|
sec |
1.04
|
x265 4K to 4K | 107.73 |
94.45
|
sec |
1.14
|
x264 1080p to 1080p | 49.98 |
13.07
|
sec |
3.82
|
Hidden Line Removal |
|
|||
Palatov | 24.29 |
29.27
|
fps |
1.21
|
LAMMPS |
|
|||
LJ | 705.82 |
1099.61
|
tau/day |
1.56
|
CHAIN | 1190.35 |
1855.03
|
tau/day |
1.56
|
EAM | 0.63 |
0.98
|
ns/day |
1.55
|
CHUTE | 38.25 |
41.60
|
tau/day |
1.09
|
RHODO | 0.26 |
0.41
|
ns/day |
1.57
|
LLVM Clang |
|
|||
PyTorch | 562.76 |
393.88
|
sec |
1.43
|
LuxCoreRender |
|
|||
DLSC | 2.46 |
4.18
|
Msamples/sec |
1.70
|
Food | 1.84 |
3.00
|
Msamples/sec |
1.63
|
Danish Mood | 2.29 |
2.63
|
Msamples/sec |
1.15
|
Procedural Leaves | 1.10 |
1.41
|
Msamples/sec |
1.28
|
MFEM |
|
|||
Dynamic AMR | 227.39 |
186.32
|
sec |
1.22
|
NAMD |
|
|||
apoa1 | 45.38 |
39.91
|
ms/step |
1.14
|
f1atpase | 130.50 |
112.07
|
ms/step |
1.16
|
stmv | 448.57 |
337.20
|
ms/step |
1.33
|
Octave |
|
|||
obench | 1.20 |
1.08
|
sec/operation |
1.11
|
benchmark2 | 0.11 |
0.10
|
sec/operation |
1.10
|
ONNX Inference |
|
|||
CPU ResNet50-FP32-batch8 Latency | 63.72 |
51.16
|
ms |
1.25
|
CPU ResNet50-FP32-batch8 Throughput | 18.33 |
21.23
|
inferences/sec |
1.16
|
CPU ResNet50-INT8-batch8 Latency | 22.37 |
27.55
|
ms |
0.81
|
CPU ResNet50-INT8-batch8 Throughput | 46.62 |
47.91
|
inferences/sec |
1.03
|
CPU SuperResolution-FP32-batch8 Latency | 58.42 |
58.53
|
ms |
1.00
|
CPU SuperResolution-FP32-batch8 Throughput | 20.87 |
23.02
|
inferences/sec |
1.10
|
CPU SuperResolution-INT8-batch8 Latency | 21.34 |
24.95
|
ms |
0.85
|
CPU SuperResolution-INT8-batch8 Throughput | 55.92 |
57.61
|
inferences/sec |
1.03
|
OpenFOAM |
|
|||
XiFoam Solver | 803.27 |
146.60
|
sec |
5.48
|
Options Pricing |
|
|||
Monte Carlo | 35137.48 |
33852.73
|
options/sec |
0.96
|
Black-Scholes | 3389.63 |
3483.70
|
Moptions/sec |
1.03
|
Binomial | 79377.62 |
66147.18
|
options/sec |
0.83
|
Poisson |
|
|||
Jacobi Rectangular Grid | 16.05 |
16.82
|
iterations/sec |
1.05
|
Jacobi Square Grid | 6.19 |
6.07
|
iterations/sec |
0.98
|
Python 3 |
|
|||
NumPy Create Matrix | 0.36 |
0.54
|
sec |
0.67
|
NumPy Add Matrix | 4.44 |
4.29
|
sec |
1.04
|
NumPy Multiply Matrix | 8.06 |
7.18
|
sec |
1.12
|
NumPy Invert Matrix | 15.53 |
12.32
|
sec |
1.26
|
NumPy Sin Matrix | 2.67 |
2.51
|
sec |
1.06
|
Multi-Matrix | 65.50 |
46.69
|
sec |
1.40
|
Rodinia CFD |
|
|||
Pre-Euler | 138.14 |
254.77
|
iterations/sec |
1.84
|
Rodinia Life Sciences |
|
|||
Heart Wall | 0.69 |
0.89
|
fps |
1.28
|
HotSpot | 8.55 |
6.08
|
sec |
1.41
|
LavaMD | 0.07 |
0.09
|
iterations/sec |
1.26
|
SRAD | 47.04 |
49.72
|
iterations/sec |
1.06
|
SRMP |
|
|||
2D | 19.45 |
19.37
|
sec |
1.00
|
9.36
Workload | Reference Result | Measured Result | Unit | SPEC Ratio |
---|---|---|---|---|
Viewport Graphics |
|
|||
3dsmax | 15.96 |
199.83
|
fps |
12.50
|
catia | 17.57 |
112.24
|
fps |
6.39
|
creo | 48.42 |
230.92
|
fps |
4.77
|
energy | 11.48 |
150.75
|
fps |
13.10
|
maya | 62.09 |
498.17
|
fps |
8.02
|
medical | 9.63 |
147.38
|
fps |
15.30
|
solidworks | 42.90 |
444.01
|
fps |
10.30
|
1.64
Workload | Reference Result | Measured Result | Unit | SPEC Ratio |
---|---|---|---|---|
WPCstorage |
|
|||
3dsmax | 3299.42 |
5395.76
|
points |
1.64
|
7zip | 431.06 |
936.56
|
points |
2.17
|
ccx | 1398.45 |
2319.68
|
points |
1.66
|
cfd | 1921.51 |
3018.54
|
points |
1.57
|
energy | 1547.93 |
2230.03
|
points |
1.44
|
handbrake | 1897.99 |
3122.44
|
points |
1.65
|
icePack | 1543.34 |
2045.34
|
points |
1.33
|
maya | 2037.06 |
5237.10
|
points |
2.57
|
MayaVenice | 472.63 |
1003.27
|
points |
2.12
|
MandE | 1625.72 |
1895.96
|
points |
1.17
|
mcad | 2612.50 |
5340.75
|
points |
2.04
|
mozillaVS | 7708.43 |
11602.00
|
points |
1.51
|
namd | 1250.61 |
1863.65
|
points |
1.49
|
proddev | 659.82 |
773.55
|
points |
1.17
|
Workload Scores
Workload | Time Stamp | Execution Time | Reference Result | Measured Result | Unit | SPEC Ratio |
---|---|---|---|---|---|---|
7-Zip | Nov 19, 2024, 5:19:32 PM EST |
3.21
|
||||
Decompression | 17.08 sec | 16.04 |
17.08
|
sec |
0.94
|
|
Compression | 46.89 sec | 254.57 |
46.89
|
sec |
5.43
|
|
Autodesk Inventor | Nov 19, 2024, 5:20:40 PM EST |
1.00
|
||||
Open Document | 4.34 sec | 4253.73 |
4147.00
|
ms |
1.03
|
|
Create/Update Files | 6.39 sec | 4973.68 |
4675.00
|
ms |
1.06
|
|
Rebuild | 9.88 sec | 10590.28 |
9681.00
|
ms |
1.09
|
|
Render Style/Material | 0.95 sec | 628.78 |
755.00
|
ms |
0.83
|
|
Blender | Nov 19, 2024, 5:21:35 PM EST |
1.73
|
||||
Classroom | 65.29 sec | 281.72 |
65.29
|
sec |
4.31
|
|
BMW27 | 30.74 sec | 43.82 |
30.74
|
sec |
1.43
|
|
BMW1M | 12.35 sec | 17.74 |
12.35
|
sec |
1.44
|
|
Island | 29.38 sec | 29.68 |
29.38
|
sec |
1.01
|
|
Convolution | Nov 19, 2024, 5:23:57 PM EST |
1.29
|
||||
20K/100 | 36.32 sec | 0.09 |
0.12
|
iterations/sec |
1.29
|
|
Data Science | Nov 19, 2024, 5:24:33 PM EST |
1.41
|
||||
Pandas | 138.40 sec | 131.99 |
108.23
|
sec |
1.22
|
|
Scikit-learn | 340.45 sec | 449.17 |
336.49
|
sec |
1.33
|
|
XGBoost | 74.00 sec | 91.50 |
53.50
|
sec |
1.71
|
|
HandBrake | Nov 19, 2024, 5:34:01 PM EST |
1.56
|
||||
SVT-AV1 8K to 4K | 138.08 sec | 195.16 |
138.08
|
sec |
1.41
|
|
x265 4K to 1080p | 38.57 sec | 38.36 |
37.03
|
sec |
1.04
|
|
x265 4K to 4K | 95.89 sec | 107.73 |
94.45
|
sec |
1.14
|
|
x264 1080p to 1080p | 13.07 sec | 49.98 |
13.07
|
sec |
3.82
|
|
GPU H.265 4K to 4K | 58.86 sec | 169.65 |
129.28
|
fps |
0.76
|
|
GPU H.265 4K to 1080p | 197.56 sec | 128.84 |
384.92
|
fps |
2.99
|
|
Hidden Line Removal | Nov 19, 2024, 5:43:09 PM EST |
1.21
|
||||
Palatov | 17.43 sec | 24.29 |
29.27
|
fps |
1.21
|
|
Palatov | 17.02 sec | 24.29 |
27.91
|
fps |
1.15
|
|
LAMMPS | Nov 19, 2024, 5:43:45 PM EST |
1.45
|
||||
LJ | 14.78 sec | 705.82 |
1099.61
|
tau/day |
1.56
|
|
CHAIN | 13.00 sec | 1190.35 |
1855.03
|
tau/day |
1.56
|
|
EAM | 14.27 sec | 0.63 |
0.98
|
ns/day |
1.55
|
|
CHUTE | 9.78 sec | 38.25 |
41.60
|
tau/day |
1.09
|
|
RHODO | 6.82 sec | 0.26 |
0.41
|
ns/day |
1.57
|
|
LLVM Clang | Nov 19, 2024, 5:44:43 PM EST |
1.43
|
||||
PyTorch | 409.84 sec | 562.76 |
393.88
|
sec |
1.43
|
|
LuxCoreRender | Nov 19, 2024, 5:52:43 PM EST |
1.42
|
||||
DLSC | 13.70 sec | 2.46 |
4.18
|
Msamples/sec |
1.70
|
|
Food | 19.50 sec | 1.84 |
3.00
|
Msamples/sec |
1.63
|
|
Danish Mood | 56.91 sec | 2.29 |
2.63
|
Msamples/sec |
1.15
|
|
Procedural Leaves | 39.14 sec | 1.10 |
1.41
|
Msamples/sec |
1.28
|
|
MFEM | Nov 19, 2024, 5:54:53 PM EST |
1.22
|
||||
Dynamic AMR | 186.32 sec | 227.39 |
186.32
|
sec |
1.22
|
|
NAMD | Nov 19, 2024, 5:57:59 PM EST |
1.21
|
||||
apoa1 | 13.94 sec | 45.38 |
39.91
|
ms/step |
1.14
|
|
f1atpase | 22.44 sec | 130.50 |
112.07
|
ms/step |
1.16
|
|
stmv | 47.61 sec | 448.57 |
337.20
|
ms/step |
1.33
|
|
Octave | Nov 19, 2024, 5:59:23 PM EST |
1.10
|
||||
obench | 46.03 sec | 1.20 |
1.08
|
sec/operation |
1.11
|
|
benchmark2 | 10.86 sec | 0.11 |
0.10
|
sec/operation |
1.10
|
|
ONNX Inference | Nov 19, 2024, 6:00:31 PM EST |
2.49
|
||||
CPU ResNet50-FP32-batch8 Latency | 20.98 sec | 63.72 |
51.16
|
ms |
1.25
|
|
CPU ResNet50-FP32-batch8 Throughput | 21.43 sec | 18.33 |
21.23
|
inferences/sec |
1.16
|
|
CPU ResNet50-FP32-batch8 Throughput | 21.96 sec | 18.33 |
21.07
|
inferences/sec |
1.15
|
|
CPU ResNet50-INT8-batch8 Latency | 20.20 sec | 22.37 |
27.55
|
ms |
0.81
|
|
CPU ResNet50-INT8-batch8 Throughput | 20.76 sec | 46.62 |
38.71
|
inferences/sec |
0.83
|
|
CPU ResNet50-INT8-batch8 Throughput | 20.81 sec | 46.62 |
47.91
|
inferences/sec |
1.03
|
|
CPU SuperResolution-FP32-batch8 Latency | 20.15 sec | 58.42 |
58.53
|
ms |
1.00
|
|
CPU SuperResolution-FP32-batch8 Throughput | 21.13 sec | 20.87 |
23.02
|
inferences/sec |
1.10
|
|
CPU SuperResolution-FP32-batch8 Throughput | 21.83 sec | 20.87 |
17.35
|
inferences/sec |
0.83
|
|
CPU SuperResolution-INT8-batch8 Latency | 20.10 sec | 21.34 |
24.95
|
ms |
0.85
|
|
CPU SuperResolution-INT8-batch8 Throughput | 20.52 sec | 55.92 |
57.61
|
inferences/sec |
1.03
|
|
CPU SuperResolution-INT8-batch8 Throughput | 20.75 sec | 55.92 |
52.10
|
inferences/sec |
0.93
|
|
GPU ResNet50-FP32-batch32 Throughput | 20.66 sec | 3.92 |
42.35
|
inferences/sec |
10.80
|
|
GPU ResNet50-INT8-batch32 Throughput | 20.62 sec | 1.92 |
73.93
|
inferences/sec |
38.50
|
|
GPU SuperResolution-FP32-batch32 Throughput | 21.60 sec | 6.59 |
37.09
|
inferences/sec |
5.63
|
|
GPU SuperResolution-INT8-batch32 Throughput | 21.53 sec | 1.92 |
39.23
|
inferences/sec |
20.40
|
|
OpenFOAM | Nov 19, 2024, 6:06:07 PM EST |
5.48
|
||||
XiFoam Solver | 162.71 sec | 803.27 |
146.60
|
sec |
5.48
|
|
XiFoam Solver | 165.34 sec | 803.27 |
155.41
|
sec |
5.17
|
|
Options Pricing | Nov 19, 2024, 6:11:39 PM EST |
0.94
|
||||
Monte Carlo | 31.23 sec | 35137.48 |
33852.73
|
options/sec |
0.96
|
|
Black-Scholes | 20.12 sec | 3389.63 |
3483.70
|
Moptions/sec |
1.03
|
|
Binomial | 15.91 sec | 79377.62 |
66147.18
|
options/sec |
0.83
|
|
Poisson | Nov 19, 2024, 6:12:46 PM EST |
1.01
|
||||
Jacobi Rectangular Grid | 10.23 sec | 16.05 |
16.41
|
iterations/sec |
1.02
|
|
Jacobi Rectangular Grid | 10.08 sec | 16.05 |
16.82
|
iterations/sec |
1.05
|
|
Jacobi Square Grid | 10.23 sec | 6.19 |
6.07
|
iterations/sec |
0.98
|
|
Jacobi Square Grid | 10.13 sec | 6.19 |
5.94
|
iterations/sec |
0.96
|
|
Python 3 | Nov 19, 2024, 6:13:27 PM EST |
1.19
|
||||
NumPy Create Matrix | 9.30 sec | 0.36 |
0.54
|
sec |
0.67
|
|
NumPy Add Matrix | 4.94 sec | 4.44 |
4.29
|
sec |
1.04
|
|
NumPy Multiply Matrix | 7.83 sec | 8.06 |
7.18
|
sec |
1.12
|
|
NumPy Invert Matrix | 12.98 sec | 15.53 |
12.32
|
sec |
1.26
|
|
NumPy Sin Matrix | 3.16 sec | 2.67 |
2.51
|
sec |
1.06
|
|
Multi-Matrix | 47.36 sec | 65.50 |
46.69
|
sec |
1.40
|
|
Rodinia CFD | Nov 19, 2024, 6:15:03 PM EST |
1.84
|
||||
Pre-Euler | 33.30 sec | 138.14 |
254.77
|
iterations/sec |
1.84
|
|
Rodinia Life Sciences | Nov 19, 2024, 6:15:36 PM EST |
1.25
|
||||
Heart Wall | 10.43 sec | 0.69 |
0.89
|
fps |
1.28
|
|
HotSpot | 7.27 sec | 8.55 |
6.08
|
sec |
1.41
|
|
LavaMD | 11.73 sec | 0.07 |
0.09
|
iterations/sec |
1.26
|
|
SRAD | 10.32 sec | 47.04 |
49.72
|
iterations/sec |
1.06
|
|
SRMP | Nov 19, 2024, 6:16:17 PM EST |
1.00
|
||||
2D | 20.25 sec | 19.45 |
19.37
|
sec |
1.00
|
|
Viewport Graphics | Nov 19, 2024, 6:16:37 PM EST |
9.36
|
||||
3dsmax | 164.63 sec | 15.96 |
199.83
|
fps |
12.50
|
|
catia | 131.85 sec | 17.57 |
112.24
|
fps |
6.39
|
|
creo | 222.80 sec | 48.42 |
230.92
|
fps |
4.77
|
|
energy | 77.61 sec | 11.48 |
150.75
|
fps |
13.10
|
|
maya | 151.03 sec | 62.09 |
498.17
|
fps |
8.02
|
|
medical | 73.74 sec | 9.63 |
147.38
|
fps |
15.30
|
|
solidworks | 74.35 sec | 42.90 |
444.01
|
fps |
10.30
|
|
WPCstorage | Nov 19, 2024, 6:32:33 PM EST |
1.64
|
||||
3dsmax | 54.56 sec | 3299.42 |
5395.76
|
points |
1.64
|
|
7zip | 45.77 sec | 431.06 |
936.56
|
points |
2.17
|
|
ccx | 11.68 sec | 1398.45 |
2319.68
|
points |
1.66
|
|
cfd | 12.20 sec | 1921.51 |
3018.54
|
points |
1.57
|
|
energy | 19.17 sec | 1547.93 |
2230.03
|
points |
1.44
|
|
handbrake | 14.76 sec | 1897.99 |
3122.44
|
points |
1.65
|
|
icePack | 48.34 sec | 1543.34 |
2045.34
|
points |
1.33
|
|
maya | 37.19 sec | 2037.06 |
5237.10
|
points |
2.57
|
|
MayaVenice | 22.48 sec | 472.63 |
1003.27
|
points |
2.12
|
|
MandE | 18.99 sec | 1625.72 |
1895.96
|
points |
1.17
|
|
mcad | 47.11 sec | 2612.50 |
5340.75
|
points |
2.04
|
|
mozillaVS | 26.18 sec | 7708.43 |
11602.00
|
points |
1.51
|
|
namd | 15.73 sec | 1250.61 |
1863.65
|
points |
1.49
|
|
proddev | 17.88 sec | 659.82 |
773.55
|
points |
1.17
|
System Configuration Details
MOTHERBOARD
Name: 21FBZB1AUSModel: Lenovo ThinkPad P16 Gen 2
Version: 21FA002UUS
Manufacturer: LENOVO
Serial Number: L1HF34D001X
BIOS: LENOVO N3TET56W (1.56 )
BIOS Version: LENOVO - 1560 (2024-08-27)
PROCESSOR
CPU #1: 13th Gen Intel(R) Core(TM) i9-13950HX (2200MHz / 24C / 32T)
MEMORY
BANK 0/1 (Controller0-ChannelA/B-DIMM1): Samsung M425R4GA3BB0-CWMOD (32.00 GB / 4000 MHz / DDR5)BANK 0/1 (Controller1-ChannelA/B-DIMM1): Samsung M425R4GA3BB0-CWMOD (32.00 GB / 4000 MHz / DDR5)
Total Memory: 64.00 GB
STORAGE
Disk #1: Intel Raid 0 Volume (7630.89 GB - SCSI)Partition 1: GPT: System (0.25 GB)
Partition 2: GPT: Basic Data (7628.67 GB)
Partition 3: GPT: Unknown (1.95 GB)
Available Volumes
C: (Windows): NTFS (7520.83 GB of 7628.67 GB Available)
NETWORK
Adapter #1: Intel(R) Wi-Fi 6E AX211 160MHzType: Ethernet 802.3 | MAC: 50:28:4A:FF:22:F1 | Speed: Not Connected
Adapter #2: Bluetooth Device (Personal Area Network)
Type: Ethernet 802.3 | MAC: 50:28:4A:FF:22:F5 | Speed: Not Connected
Adapter #3: Realtek USB 2.5GbE Family Controller
Type: Ethernet 802.3 | MAC: 60:7D:09:0D:D1:DC | Speed: 1000.00 Mbit
GRAPHICS
Adapter #1: NVIDIA RTX 5000 Ada Generation Laptop GPUVideo Memory: 15.99 GB
Current Resolution: 3840x2400 @ 60 Hz (32-bit Color)
Driver Version: 31.0.15.3878 (2024-06-09)
DISPLAY
Display #1: LENOVO GROUP LIMITED Internal Display 15.9" (3840x2400)Model: 41BC | S/N: None | Connector: Embedded DisplayPort (Digital)
Windows Screens
Screen 1: 1920x1200 @ 32 bpp
BATTERY
Battery #1 (Front): P/N: 5B10W51893 | Mfg: SIMPLE COMPUTING | Charge Level: 98%
OPERATING SYSTEM
Name: Microsoft Windows 11 Pro 64-bitVersion: 10.0.26100.2314 (Release 2009)
Installation Date: 2024-11-08
Free Memory: 54.71 GB (Physical) | 59.18 GB (Virtual) | 4.00 GB (Paging)
Screensaver: Disabled
Visual Effects Setting: Let Windows Choose
Virtualization Based Security (VBS): Not Running
Active Power Plan: Balanced (381b4222-f694-41f0-9685-ff5bb260df2e)